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Abstract. We present a novel problem of random tiling of the plane with two kinds of 
squares having two quarters of circles drawn on them. The lines generated by these pieces 
of a circle are shown to form fractal loops, the nature of which is equivalent to ‘smart 
kinetic walks’, to hulls of percolation clusters or, finally, to conformations of polymers at 
the 0 point. We also study the transport properties of these structures and of the ‘modified’ 
percolation problem associated with it. 

Let us consider the tiling of a plane with two elements, shown in figures 1( a )  and ( b ) ,  
chosen at random with equal probability. Both cells consist of two quarters of circle, 
whose centres are located on two opposite comers of the square, and whose radii are 
equal to half the length of the square. By construction, these pieces of a circle form 
continuous lines. It is thus impossible to have branching points or to find dead ends. 
Therefore these lines must either be closed (and form loops) or be infinite (i.e. start 
and end at ‘infinity’). 

This letter is devoted to some properties of this tiling and its relation to various 
models of statistical mechanics. We call this problem ‘hull percolation’ for reasons 
that will become clear later. 

( a )  Loop distribution. We generated one large lattice (1000 x 1000) and recorded 
the number, N ( L ) ,  of closed loops of given size L (the length of the loop is counted 

Figure 1. We consider in this letter the random tiling of a plane with the two elements 
shown in (a) and (b). The quarters of circles are found to generate loops as shown in ( c )  
with a fractal structure. 
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as the number of quarters of a circle). We found that this distribution, shown in figure 
2, follows a power law: 

N ( L )  a L - ~  (1) 

where f3 = 2.16zt0.10. 
( b )  Fractal dimension. Using the construction of this tiling, it is straightforward 

to generate a single loop without generating a complete tiling over the plane. It is 
sufficient to decide for the orientation of the squares only along the line being 
constructed and to test at every step of the generation whether the new square reached 
by the line had not been encountered previously. In this case, we use the piece of 
circle already chosen that may either continue the line, and avoid a crossing, or close 
the loop. This algorithm is thus very close in spirit to the one introduced by Ziff et a1 
[ 11, and developed by Ziff and Sapoval [2], to generate external perimeters of percola- 
tion clusters. We will see, in the following, that this analogy is not fortuitous. We 
used periodic boundary conditions on a L X  L square lattice, which turned it into a 
torus. We measured the average length of loops drawn on this torus if and only if 
they had a genus different from (0,O). The genus of the loop, (a ,  b), represents the 
number of times (winding number) the loop crosses the horizontal boundary a and 
the vertical boundary b. This topological invariant counts the number of windings 
made on the torus. We only use it here as an easy criterion for deciding if the loop 
spans the lattice or not. The average, (M), of the length of these loops depends on 
the lattice size L, according to a power-law relation: 

( M ) E L ~ ~  (2) 
where dr is the fractal dimension of the loops. Using data obtained on 500 non-zero 
genus loops on lattices of size 10,20,30,40 and 50, we obtained the estimate d f =  
1.73 zt 0.02, as shown in figure 3. 

& 100 
5 z 

10 

I - 
10 100 1 

Size 

Figure 2. Loop size distribution obtained in a lO0Ox lo00 lattice. The total number of 
loops amounts to 1oOO0O. The graph shows a log-log plot of the histogram showing a 
power-law distribution (see ( 1 )  in the text). 
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Figure 3. Mean length of a spanning loop generated in a torus of size L x L. The spanning 
criterion is that the loops have non-zero genus. The log-log plot of this mean length against 
size L gives the fractal dimension as the slope of the line drawn in the figure. We found 
here that 1.73 i 0.02. 

(c) Probability of spanning. We also studied the fractal dimension using a different 
method. We considered a long strip of width w and of length lo4. We computed the 
probability for a line to connect the two longitudinal borders of the strip, P( w )  (we 
will call this the ‘probability of spanning’ in the following). The use of such a strip 
geometry is usual in transfer matrix methods [3] so as to obtain a good average of the 
property considered independent of the length. The above-mentioned length was 
sufficient to ensure small statistical fluctuations. We also recorded the length M’ of 
all the spanning lines. The evolution of (M’ )  scales with the strip width as (figure 4) 

where df = 1.76 f 0.04. These two determinations of the fractal dimension are consistent. 
(MI)= wdf (3) 

0.6 0.8 1 0  
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Figure 4. Mean length of a spanning line in a strip-shape geometry plotted against strip 
width in a log-log scale. The slope should give also the fractal dimension of the lines 
generated in the tiling. We found 1.76*0.04 in agreement with the previous determination 
(figure 3). 
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The probability of spanning P (  w) decreases as the width increases with a power 

P( w )  a w - ~ .  (4) 

law which is 

Figure 5 shows a log-log plot of P(w) against w, which provides the estimate of 
(Y = 0.95 f 0.05. In fact, assuming the property of isotropy of these lines we are led to 
expect spanning lines through the strip separated by a distance roughly equal to the 
width of the strip. Thus Q = 1, consistent with our numerical estimate. 

0 . 4  0.6 0.8 1.0 
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Figure 5. A log-log plot of the probability that a line crosses the strip as a function of the 
strip width. We found a power law of slope 0.95 f 0.05 (see (4)). 

( d )  Conductivity and elasticity. The last scaling laws, equations (3) and (4), allow 
one to obtain information about the conductivity of the strip when one considers that 
the quarters of circles have a given resistance. Because there is no branching point, 
nor dead end, the conductance of a spanning line is inversely proportional to its length. 
Therefore the conductivity G( w )  of the strip is equal to the probability P (  w) times 
the inverse of (M’) if these two properties are decorrelated. Finally 

G ( w )  =((P(w)/M’(w))) = P(w)/(M’(w)) ( 5 )  

G (  w )  cc w - ~  ( 6 )  

and we obtain 

where g = (Y + d f  = 2.70*0.07 (or g = 2.75 using the values Q = 1 and df= 1.75). Similar 
forms of the power-law dependence of conductivity plotted against system size are 
known to occur, for instance, in percolation. However, the value of the exponent g 
obtained here is remarkably large (for percolation the corresponding exponent amounts 
to t /  Y = 0.97 f 0.01 [3] where t denotes the conductivity exponent and Y that of the 
correlation length). 

If we consider now the case where the pieces of circles are elastic wires, then the 
elastic modulus of the structure is clearly controlled by bending elasticity. Therefore, 
taking into account lever-arm effects and assuming that the conformations of the 
spanning lines are statistically isotropic (or at least that the radius of gyration of these 
lines scales in the same way in all directions, parallel or orthogonal to the axis of the 
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strip), we can obtain the evolution of the elastic modulus, E ( w ) ,  with the system size 
following the argument given in [4] 

E ( w ) E  w - ~  (7)  
where E = g + 2 ,  thus giving E = 4.70k0.07 ,  still much larger than the corresponding 
value for percolation: T /  U = 2.97 f 0.03 [SI (where T is the elasticity exponent for 
percolation for systems having angular elasticity). Let us note, however, that the 
relation between E and g is exact in our case whereas it is only an upper bound for 
percolation T /  U 6 t /  U + 2 [4]. 

We now look at the connection with other models. 
( a )  The smart kinetic walk ( S K W ) .  Among the different models for self-avoiding 

walks or polymers (self-avoiding walk, true self-avoiding walk, kinetic growing walk, 
Laplacian walk, etc) (for a review see [6]) one model has been considered, the ‘smart 
kinetic walk’ [7], which shares a lot of properties with the loops we have presented 
above. In addition to self-avoidance, the SKW has the ‘smartness’ of not getting trapped. 
Such a walk cannnot get trapped into a loop made by its past trajectory that would 
impel its further growth. In two dimensions, such smartness can be implemented by 
only local information: whenever a walker gets to the neighbourhood of its past 
trajectory, one needs to know the direction in which the trajectory was followed. The 
walker at this point should turn in the opposite direction. 

In our model of tiling, we always set two quarters of a circle per square. A line 
will go through one of these arcs, while the other arc is left so as to provide the local 
information needed to get self-avoidance of these walks. Moreover, in order to avoid 
trapping, one also needs to know the direction followed by the walk. Let us note that, 
whenever a walk has started (for example see figure 6 )  in A, with a given direction 
indicated by an arrow, then the direction followed by the walker on all the available 
edges of the plane is fixed once and for all. These directions are indicated by arrows 
on figure 6 .  Therefore, knowing the location of the walker at a given time is enough 
to know its direction. This simple property prevents the walker from being trapped. 
The conclusion is that this walk is in the same universality class as SKW. 

Our numerical results strengthen this conclusion. The fractal dimension of SKW 

has been shown indirectly [7 ,8]  to be exactly equal to f = 1.75, in agreement with our 
numerical estimates. 

Figure 6. This figure shows that each edge of squares in the plane can be reached with 
only one direction once the walk has started in A. Therefore, the structure of the tiling 
provides not only self-avoidance but also ‘smartness’ in preventing the walker from being 
trapped. 
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( b )  The hull ofpercolation clusters. In [7], it was proven that SKW belongs to the 
same universality class as the hull of a percolation cluster. The hull is defined as the 
set of vacant bond nearest neighbours to a cluster that can be joined by a continuous 
path from infinity without crossing the cluster. In other words, it is the external 
perimeter. This suggests we can translate some known results of percolation to our 
problem. Provided that not only the structure of individual loops is identical in both 
problems, but also the complete statistical distribution of their sizes, we can obtain an 
estimate of the exponent 8 introduced previously. At percolation threshold, we know 
that the distribution of clusters follows a power law given by 

n( s) s-' (8) 

where T =%. In addition, it is known (see [8,9]) that the relation between the length 
of the external hull, h, of a cluster and its area, s, is 

h a s X  (9) 

where x = 3. The combination of these two laws gives 

N ( h ) d h x n ( s ) d s  

e = 1 + ( 7 -  l ) / x  

or numerically, 8 = 2.143 . . . , in perfect agreement with our estimate. 

of A can be expressed in terms of N(L),  since L a A d i  
Let us call A the radius of gyration of a loop of length L. The distribution, P ( A ) ,  

The number of loops whose radius is larger than w is 

IwmN(A) d A x  wdf(l-') .  

In order to compute the probability that such a loop crosses the strip of width w, one 
must take into account an additional factor of w, which represents the possibility of 
having the centre of the loop located anywhere inside the loop. Thus, finally, the 
probability of spanning will vary as ~ ~ f ( ' - ' ) + ~  or Q = d,-(fl- 1) - l-using the values of 
df and 8 give Q = 1. This result is in complete agreement with both our numerical 
estimate Q = 0.95 and the isotropy argument we gave above leading to Q = 1. 

The analogy of our random tiling with a percolation hull problem, which has been 
obtained indirectly, suggests looking for a more direct analogy. 

Let us consider the following 'non-standard' percolation problem: on a square 
lattice, one cuts all squares along one, and only one, diagonal, either from top left to 
bottom right with probability f, or from top right to bottom left, with the same probability 
(see figure 7). These cuts will form clusters, the hulls of which are the loops introduced 
in our random tiling problem. Indeed, in figure 1, we see in the tiling squares ( a )  and 
( b )  both types of connection still preserved by the two possible diagonal cuts. Therefore, 
our lines just reflect the hull of these clusters. This problem does not seem to be a 
percolation problem strictly speaking, since we impose one fixed occupancy level 
instead of using it as a free parameter as would be done in normal percolation. 
However, in figure 7, we can see clearly that the bonds are drawn on two square 
lattices. One of them is obtained from the other one, by translating it by half the lattice 
spacing, in the two directions of the principal axis. If we now focus on only one 
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Figure 7. The tiling problem can be seen as the hull of a ‘non-standard’ percolation problem 
defined in the following way. Each square of a lattice is cut along one diagonal at random. 
These cuts form clusters, the hull of which are in direct correspondance with the loops 
drawn by our tiling model. 

lattice, we see that the bonds will be present with a probability of 0.5. Therefore, for 
both of these lattices, we have precisely a bond percolation problem at threshold. Let 
us also note that the geometry of one lattice is exactly dual to the other. Therefore, 
in figure 7, we have two dual percolation configurations at p c .  

We indeed checked numerically that the scalar transport properties of this non- 
standard percolation is identical to the one observed in usual percolation. Explicitly, 
we studied by a transfer matrix analysis [3] the conductivity, G, of a strip variable 
width w and of length 20 000 assuming that the present diagonals were Ohmic resistors. 
We obtained the data shown in figure 8, in a log-log plot of G against w. The line 
drawn on this figure has the slope obtained for usual percolation, i.e. t /  v = 0.97 [3]. 
It seems that we tend to recover such a value for large enough widths. 
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Figure 8. A log-log plot of the conductivity G of a strip of width w, whose geometry is 
identical to the one shown in figure 7 assuming that the bonds drawn are Ohmic resistors. 
The line drawn represents the slope expected for usual percolation. It seems likely that 
both the geometrical and transport features of normal percolation are recovered in this 
problem. 
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This provides a natural physical realisation of systems where the transport exponents 
computed previously in the case of electrical conductivity and elasticity should be 
observed. 

A way to escape from criticality could be, for instance, to add a proportion of 
squares with either four quarters of circles drawn on them (the superposition of the 
squares shown in figures l (a )  and (b)) or none (blank squares). 

We note that the hull of percolation clusters has been shown [ 101 to belong to the 
same universality class as polymers at the 8 point [ll]. Thus, our walks must also in 
turn belong to the same family. 

We have considered the properties of a very simple model of random tiling of a 
plane which turned out to be equivalent to other models of statistical physics, as the 
problem of smart self-avoiding walks, hulls of percolation clusters and polymers at 
the B point. These relations allowed the identification of a non-standard percolation 
problem underlying the notion of ‘hulls’ generated in the tiling. Our numerical results 
are consistent with known properties. In addition, we have obtained some new results 
concerning the transport properties of these structures, which can easily be tested 
experimentally, in the ‘non-standard’ percolation model introduced above. 

It is a pleasure to thank H J Herrmann for useful discussions. One of us (SR) 
acknowledges the support of the Ecole Nationale des Ponts et ChaussCes. 
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